584 research outputs found

    Treatment costs and priority setting in health care: A qualitative study

    Get PDF
    The aim of this study is to investigate whether the public believes high cost patients should be a lower priority for public health care than low cost patients, other things being equal, in order to maximise health gains from the health budget. Semi-structured group discussions were used to help participants reflect critically upon their own views and gain exposure to alternative views, and in this way elicit underlying values rather than unreflective preferences. Participants were given two main tasks: first, to select from among three general principles for setting health care priorities the one that comes closest to their own views; second, to allocate a limited hospital budget between two groups of imaginary patients. Forty-one people, varying in age, occupation, income and education level, participated in a total of six group discussions with each group comprising between six and eight people

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    The histone demethylase LSD1 regulates inner ear progenitor differentiation through interactions with Pax2 and the NuRD repressor complex

    Get PDF
    The histone demethylase LSD1 plays a pivotal role in cellular differentiation, particularly in silencing lineage-specific genes. However, little is known about how LSD1 regulates neurosensory differentiation in the inner ear. Here we show that LSD1 interacts directly with the transcription factor Pax2 to form the NuRD co-repressor complex at the Pax2 target gene loci in a mouse otic neuronal progenitor cell line (VOT-N33). VOT-N33 cells expressing a Pax2-response element reporter were GFP-negative when untreated, but became GFP positive after forced differentiation or treatment with a potent LSD inhibitor. Pharmacological inhibition of LSD1 activity resulted in the enrichment of mono- and di-methylation of H3K4, upregulation of sensory neuronal genes and an increase in the number of sensory neurons in mouse inner ear organoids. Together, these results identify the LSD1/NuRD complex as a previously unrecognized modulator for Pax2-mediated neuronal differentiation in the inner ear

    Curing of Plasmid pXO1 from Bacillus anthracis Using Plasmid Incompatibility

    Get PDF
    The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures) can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome

    Reduced global longitudinal strain in association to increased left ventricular mass in patients with aortic valve stenosis and normal ejection fraction: a hybrid study combining echocardiography and magnetic resonance imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased muscle mass index of the left ventricle (LVMi) is an independent predictor for the development of symptoms in patients with asymptomatic aortic stenosis (AS). While the onset of clinical symptoms and left ventricular systolic dysfunction determines a poor prognosis, the standard echocardiographic evaluation of LV dysfunction, only based on measurements of the LV ejection fraction (EF), may be insufficient for an early assessment of imminent heart failure. Contrary, 2-dimensional speckle tracking (2DS) seems to be superior in detecting subtle changes in myocardial function. The aim of the study was to assess these LV function deteriorations with global longitudinal strain (GLS) analysis and the relations to LVMi in patients with AS and normal EF.</p> <p>Methods</p> <p>50 patients with moderate to severe AS and 31 controls were enrolled. All patients underwent echocardiography, including 2DS imaging. LVMi measures were performed with magnetic resonance imaging in 38 patients with AS and indexed for body surface area.</p> <p>Results</p> <p>The total group of patients with AST showed a GLS of -15,2 ± 3,6% while the control group reached -19,5 ± 2,7% (p < 0,001). By splitting the group with AS in normal, moderate and severe increased LVMi, the GLS was -17,0 ± 2,6%, -13,2 ± 3,8% and -12,4 ± 2,9%, respectively (p = 0,001), where LVMi and GLS showed a significant correlation (r = 0,6, p < 0,001).</p> <p>Conclusions</p> <p>In conclusion, increased LVMi is reflected in abnormalities of GLS and the proportion of GLS impairment depends on the extent of LV hypertrophy. Therefore, simultaneous measurement of LVMi and GLS might be useful to identify patients at high risk for transition into heart failure who would benefit from aortic valve replacement irrespectively of LV EF.</p

    The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation

    Get PDF
    The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome

    Broad-Scale Recombination Patterns Underlying Proper Disjunction in Humans

    Get PDF
    Although recombination is essential to the successful completion of human meiosis, it remains unclear how tightly the process is regulated and over what scale. To assess the nature and stringency of constraints on human recombination, we examined crossover patterns in transmissions to viable, non-trisomic offspring, using dense genotyping data collected in a large set of pedigrees. Our analysis supports a requirement for one chiasma per chromosome rather than per arm to ensure proper disjunction, with additional chiasmata occurring in proportion to physical length. The requirement is not absolute, however, as chromosome 21 seems to be frequently transmitted properly in the absence of a chiasma in females, a finding that raises the possibility of a back-up mechanism aiding in its correct segregation. We also found a set of double crossovers in surprisingly close proximity, as expected from a second pathway that is not subject to crossover interference. These findings point to multiple mechanisms that shape the distribution of crossovers, influencing proper disjunction in humans

    WISDOM-II: Screening against multiple targets implicated in malaria using computational grid infrastructures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite continuous efforts of the international community to reduce the impact of malaria on developing countries, no significant progress has been made in the recent years and the discovery of new drugs is more than ever needed. Out of the many proteins involved in the metabolic activities of the <it>Plasmodium </it>parasite, some are promising targets to carry out rational drug discovery.</p> <p>Motivation</p> <p>Recent years have witnessed the emergence of grids, which are highly distributed computing infrastructures particularly well fitted for embarrassingly parallel computations like docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on plasmepsins and ended up in the identification of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR), and on a new promising one, glutathione-S-transferase.</p> <p>Methods</p> <p>In silico drug design, especially vHTS is a widely and well-accepted technology in lead identification and lead optimization. This approach, therefore builds, upon the progress made in computational chemistry to achieve more accurate <it>in silico </it>docking and in information technology to design and operate large scale grid infrastructures.</p> <p>Results</p> <p>On the computational side, a sustained infrastructure has been developed: docking at large scale, using different strategies in result analysis, storing of the results on the fly into MySQL databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA rescoring. The modeling results obtained are very promising. Based on the modeling results, <it>In vitro </it>results are underway for all the targets against which screening is performed.</p> <p>Conclusion</p> <p>The current paper describes the rational drug discovery activity at large scale, especially molecular docking using FlexX software on computational grids in finding hits against three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms) implicated in malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries for other biological targets relevant to fight the infectious diseases of the developing world.</p
    corecore